fp8
Weight, Activation, and KV Cache Quantization
llmcompressor
now supports quantizing weights, activations, and KV cache to fp8
for memory savings and inference acceleration with vllm
.
fp8
computation is supported on NVIDIA GPUs with compute capability > 8.9 (Ada Lovelace, Hopper).
Installation
To get started, install llmcompressor from source as this feature is new:
pip install git+https://github.com/vllm-project/llm-compressor.git@cb98f34d4ec9dd175e6995d12fb02dec39c6f27a
Quickstart
The example includes an end-to-end script for applying the quantization algorithm:
The resulting model Meta-Llama-3-8B-Instruct-FP8-KV
is ready to be loaded into vLLM.
Code Walkthrough
Let's walk through the main steps of the quantization process:
- Load model
- Prepare calibration data
- Apply quantization
- Evaluate and save the model
1. Load Model
Load the model using AutoModelForCausalLM
:
from transformers import AutoModelForCausalLM, AutoTokenizer
MODEL_ID = "meta-llama/Meta-Llama-3-8B-Instruct"
model = AutoModelForCausalLM.from_pretrained(
MODEL_ID,
device_map="auto",
torch_dtype="auto",
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID)
2. Prepare Calibration Data
Prepare the calibration data using the ultrachat
dataset:
from datasets import load_dataset
DATASET_ID = "HuggingFaceH4/ultrachat_200k"
DATASET_SPLIT = "train_sft"
NUM_CALIBRATION_SAMPLES = 512
MAX_SEQUENCE_LENGTH = 2048
ds = load_dataset(DATASET_ID, split=f"{DATASET_SPLIT}[:{NUM_CALIBRATION_SAMPLES}]")
ds = ds.shuffle(seed=42)
def process_and_tokenize(example):
text = tokenizer.apply_chat_template(example["messages"], tokenize=False)
return tokenizer(text, padding=False, max_length=MAX_SEQUENCE_LENGTH, truncation=True, add_special_tokens=False)
ds = ds.map(process_and_tokenize, remove_columns=ds.column_names)
3. Apply Quantization
Configure and apply the FP8 quantization for weights, activations, and KV cache. Notice the new kv_cache_scheme
section:
from llmcompressor import oneshot
recipe = """
quant_stage:
quant_modifiers:
QuantizationModifier:
ignore: ["lm_head"]
config_groups:
group_0:
weights:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
input_activations:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
targets: ["Linear"]
kv_cache_scheme:
num_bits: 8
type: float
strategy: tensor
dynamic: false
symmetric: true
"""
oneshot(
model=model,
dataset=ds,
recipe=recipe,
max_seq_length=MAX_SEQUENCE_LENGTH,
num_calibration_samples=NUM_CALIBRATION_SAMPLES,
)
4. Evaluate and Save the Model
Test the quantized model with a sample generation:
input_ids = tokenizer("Hello my name is", return_tensors="pt").input_ids.to("cuda")
output = model.generate(input_ids, max_new_tokens=100)
print(tokenizer.decode(output[0]))
Save the quantized model:
SAVE_DIR = MODEL_ID.split("/")[1] + "-FP8-KV"
model.save_pretrained(SAVE_DIR, save_compressed=True)
tokenizer.save_pretrained(SAVE_DIR)
For running the model in vLLM, make sure to specify the kv_cache_dtype="fp8"
argument to enable quantization of the kv cache, and thus usage of your calibrated scales.
Evaluating Accuracy
To evaluate the accuracy of your quantized model:
- Install
vllm
andlm-evaluation-harness
:
- Run an evaluation (e.g., on GSM-8K):
MODEL=$PWD/Meta-Llama-3-8B-Instruct-FP8-KV
lm_eval \
--model vllm \
--model_args pretrained=$MODEL,kv_cache_dtype=fp8,add_bos_token=True \
--tasks gsm8k --num_fewshot 5 --batch_size auto
vllm (pretrained=Meta-Llama-3-8B-Instruct-FP8-KV,kv_cache_dtype=fp8,add_bos_token=True), gen_kwargs: (None), limit: None, num_fewshot: 5, batch_size: auto
|Tasks|Version| Filter |n-shot| Metric | |Value | |Stderr|
|-----|------:|----------------|-----:|-----------|---|-----:|---|-----:|
|gsm8k| 3|flexible-extract| 5|exact_match|↑ |0.7748|± |0.0115|
| | |strict-match | 5|exact_match|↑ |0.7763|± |0.0115|
Note: Include add_bos_token=True
as quantized models can be sensitive to the presence of the bos
token.
Questions or Feature Requests?
Please open an issue on vllm-project/llm-compressor
.