Keyword arguments passed in from oneshot
or train
will separate the arguments into the following:
* ModelArguments in
src/llmcompressor/args/model_args.py
* DatasetArguments in
src/llmcompressor/args/dataset_args.py
* RecipeArguments in
src/llmcompressor/args/recipe_args.py
* TrainingArguments in
src/llmcompressor/args/training_args.py
ModelArguments, DatasetArguments, and RecipeArguments are used for both oneshot
and train
. TrainingArguments is only used for train
.
Source code in src/llmcompressor/args/utils.py
| def parse_args(
include_training_args: bool = False, **kwargs
) -> Tuple[ModelArguments, DatasetArguments, RecipeArguments, TrainingArguments, str]:
"""
Keyword arguments passed in from `oneshot` or `train` will
separate the arguments into the following:
* ModelArguments in
src/llmcompressor/args/model_args.py
* DatasetArguments in
src/llmcompressor/args/dataset_args.py
* RecipeArguments in
src/llmcompressor/args/recipe_args.py
* TrainingArguments in
src/llmcompressor/args/training_args.py
ModelArguments, DatasetArguments, and RecipeArguments are used for both
`oneshot` and `train`. TrainingArguments is only used for `train`.
"""
# pop output_dir, used as an attr in TrainingArguments, where oneshot is not used
output_dir = kwargs.pop("output_dir", None)
parser_args = (ModelArguments, DatasetArguments, RecipeArguments)
if include_training_args:
parser_args += (TrainingArguments,)
parser = HfArgumentParser(parser_args)
parsed_args = parser.parse_dict(kwargs)
training_args = None
if include_training_args:
model_args, dataset_args, recipe_args, training_args = parsed_args
if output_dir is not None:
training_args.output_dir = output_dir
else:
model_args, dataset_args, recipe_args = parsed_args
if recipe_args.recipe_args is not None:
if not isinstance(recipe_args.recipe_args, dict):
arg_dict = {}
for recipe_arg in recipe_args.recipe_args:
key, value = recipe_arg.split("=")
arg_dict[key] = value
recipe_args.recipe_args = arg_dict
# raise depreciation warnings
if dataset_args.remove_columns is not None:
logger.warn(
"`remove_columns` argument is depreciated. When tokenizing datasets, all "
"columns which are invalid inputs the tokenizer will be removed",
DeprecationWarning,
)
# silently assign tokenizer to processor
resolve_processor_from_model_args(model_args)
return model_args, dataset_args, recipe_args, training_args, output_dir
|