Skip to content

llmcompressor.args.utils

parse_args(include_training_args=False, **kwargs)

Keyword arguments passed in from oneshot or train will separate the arguments into the following:

* ModelArguments in
    src/llmcompressor/args/model_args.py
* DatasetArguments in
    src/llmcompressor/args/dataset_args.py
* RecipeArguments in
    src/llmcompressor/args/recipe_args.py
* TrainingArguments in
    src/llmcompressor/args/training_args.py

ModelArguments, DatasetArguments, and RecipeArguments are used for both oneshot and train. TrainingArguments is only used for train.

Source code in src/llmcompressor/args/utils.py
def parse_args(
    include_training_args: bool = False, **kwargs
) -> Tuple[ModelArguments, DatasetArguments, RecipeArguments, TrainingArguments, str]:
    """
    Keyword arguments passed in from `oneshot` or `train` will
    separate the arguments into the following:

        * ModelArguments in
            src/llmcompressor/args/model_args.py
        * DatasetArguments in
            src/llmcompressor/args/dataset_args.py
        * RecipeArguments in
            src/llmcompressor/args/recipe_args.py
        * TrainingArguments in
            src/llmcompressor/args/training_args.py

    ModelArguments, DatasetArguments, and RecipeArguments are used for both
    `oneshot` and `train`. TrainingArguments is only used for `train`.

    """

    # pop output_dir, used as an attr in TrainingArguments, where oneshot is not used
    output_dir = kwargs.pop("output_dir", None)

    parser_args = (ModelArguments, DatasetArguments, RecipeArguments)
    if include_training_args:
        parser_args += (TrainingArguments,)

    parser = HfArgumentParser(parser_args)
    parsed_args = parser.parse_dict(kwargs)

    training_args = None
    if include_training_args:
        model_args, dataset_args, recipe_args, training_args = parsed_args
        if output_dir is not None:
            training_args.output_dir = output_dir
    else:
        model_args, dataset_args, recipe_args = parsed_args

    if recipe_args.recipe_args is not None:
        if not isinstance(recipe_args.recipe_args, dict):
            arg_dict = {}
            for recipe_arg in recipe_args.recipe_args:
                key, value = recipe_arg.split("=")
                arg_dict[key] = value
            recipe_args.recipe_args = arg_dict

    # raise depreciation warnings
    if dataset_args.remove_columns is not None:
        logger.warn(
            "`remove_columns` argument is depreciated. When tokenizing datasets, all "
            "columns which are invalid inputs the tokenizer will be removed",
            DeprecationWarning,
        )

    # silently assign tokenizer to processor
    resolve_processor_from_model_args(model_args)

    return model_args, dataset_args, recipe_args, training_args, output_dir