llmcompressor.entrypoints.oneshot
Oneshot
Class responsible for carrying out one-shot calibration on a pretrained model.
This class handles the entire lifecycle of one-shot calibration, including preprocessing (model and tokenizer/processor initialization), model optimization (quantization or sparsification), and postprocessing (saving outputs). The intructions for model optimization can be specified by using a recipe.
-
Input Keyword Arguments:
kwargs
are parsed into:model_args
: Arguments for loading and configuring a pretrained model (e.g.,AutoModelForCausalLM
).dataset_args
: Arguments for dataset-related configurations, such as calibration dataloaders.recipe_args
: Arguments for defining and configuring recipes that specify optimization actions.
Parsers are defined in
src/llmcompressor/args/
. -
Lifecycle Overview: The oneshot calibration lifecycle consists of three steps:
- Preprocessing:
- Instantiates a pretrained model and tokenizer/processor.
- Ensures input and output embedding layers are untied if they share tensors.
- Patches the model to include additional functionality for saving with quantization configurations.
- Oneshot Calibration:
- Optimizes the model using a global
CompressionSession
and applies recipe-defined modifiers (e.g.,GPTQModifier
,SparseGPTModifier
)
- Optimizes the model using a global
- Postprocessing:
- Saves the model, tokenizer/processor, and configuration to the specified
output_dir
.
- Saves the model, tokenizer/processor, and configuration to the specified
- Preprocessing:
-
Usage:
Methods: init(**kwargs): Initializes the Oneshot
object by parsing input arguments, performing preprocessing, and setting instance attributes.
__call__(**kwargs):
Performs the one-shot calibration process by preparing a calibration
dataloader, applying recipe modifiers to the model, and executing
postprocessing steps.
save():
Saves the calibrated model and tokenizer/processor to the specified
`output_dir`. Supports saving in compressed formats based on model
arguments.
apply_recipe_modifiers(calibration_dataloader, **kwargs):
Applies lifecycle actions (e.g., `initialize`, `finalize`) using modifiers
defined in the recipe. Each action is executed via the global
`CompressionSession`.
Source code in src/llmcompressor/entrypoints/oneshot.py
15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
|
__call__()
Performs one-shot calibration.
This method prepares a calibration dataloader using dataset arguments and applies recipe-based modifiers to optimize the model. The lifecycle actions are executed sequentially, and the modified model is saved during postprocessing.
Source code in src/llmcompressor/entrypoints/oneshot.py
__init__(**kwargs)
Initializes the Oneshot
class with provided arguments.
Parses the input keyword arguments into model_args
, dataset_args
, and recipe_args
. Performs preprocessing to initialize the model and tokenizer/processor.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model_args | ModelArguments parameters, responsible for controlling model loading and saving logic | required | |
dataset_args | DatasetArguments parameters, responsible for controlling dataset loading, preprocessing and dataloader loading | required | |
recipe_args | RecipeArguments parameters, responsible for containing recipe-related parameters | required | |
output_dir | Path to save the output model after carrying out oneshot | required |
Source code in src/llmcompressor/entrypoints/oneshot.py
apply_recipe_modifiers(calibration_dataloader, recipe_stage=None)
Applies recipe modifiers to the model during the lifecycle.
The modifiers are defined in the recipe and executed via lifecycle actions (initialize
, finalize
) through the global CompressionSession
.