Skip to content

llmcompressor.metrics.utils.frequency_manager

FrequencyManager

Class for managing the frequency of logging and model updates

Parameters:

Name Type Description Default
log_frequency LogStepType

The frequency to log at

None
mode LoggingModeType

The logging mode to use, either "on_change" or "exact", "on_change" will log when the model has been updated since the last log, "exact" will log at the given frequency regardless of model updates

DEFAULT_LOGGING_MODE
frequency_type FrequencyType

The frequency type to use, either "epoch", "step", or "batch" controls what the frequency manager is tracking, e.g. if the frequency type is "epoch", then the frequency manager will track the number of epochs that have passed since the last log, if the frequency type is "step", then the frequency manager will track the number of optimizer steps

DEFAULT_FREQUENCY_TYPE
Source code in src/llmcompressor/metrics/utils/frequency_manager.py
class FrequencyManager:
    """
    Class for managing the frequency of logging and model updates

    :param log_frequency: The frequency to log at
    :param mode: The logging mode to use, either "on_change" or "exact",
        "on_change" will log when the model has been updated since the last log,
        "exact" will log at the given frequency regardless of model updates
    :param frequency_type: The frequency type to use, either "epoch", "step", or "batch"
        controls what the frequency manager is tracking, e.g. if the frequency type
        is "epoch", then the frequency manager will track the number of epochs that
        have passed since the last log, if the frequency type is "step", then the
        frequency manager will track the number of optimizer steps
    """

    def __init__(
        self,
        log_frequency: LogStepType = None,
        mode: LoggingModeType = DEFAULT_LOGGING_MODE,
        frequency_type: FrequencyType = DEFAULT_FREQUENCY_TYPE,
    ):
        # sets self._logging_mode and self._check_model_update
        self._logging_mode = self._set_logging_mode(mode=mode)

        # sets self._frequency_type and self._valid_python_types
        self.frequency_type = self._set_frequency_type(frequency_type=frequency_type)

        self._validate_log_frequency(log_frequency=log_frequency)
        self._log_frequency = log_frequency

        self.last_log_step: LogStepType = None
        self.last_model_update_step: LogStepType = None

    def __repr__(self):
        return (
            f"{self.__class__.__name__}(log_frequency={self.log_frequency}, "
            f"mode={self._logging_mode}, frequency_type={self.frequency_type})"
        )

    def log_ready(
        self,
        current_log_step: LogStepType,
        check_model_update: bool = False,
    ):
        """
        Check if the frequency manager is ready to log
        Conditions for readiness:
            - log frequency is not None
            - current log step is None
            - current log step greater than or equal to the last log step
                plus the log frequency
            - if check_model_update is True, or self._check_model_update is True,
                then the last model update step must be greater than or equal
                to the last log step, and the current log step must be greater
                than or equal to the last model update step plus the log frequency

        :param current_log_step: The current log step
        :param check_model_update: If True, will check if the model has been updated
            since the last log step and if _log_frequency steps have passed since the
            last model update; Defaults to False.
        :return: True if the frequency manager is ready to log,
            False otherwise
        """
        # check_model_update is used to override self._check_model_update
        # e.g. if check_model_update is True, then the model update check
        # will be performed even if self._check_model_update is False

        check_model_update = check_model_update or self._check_model_update

        return log_ready(
            current_log_step=current_log_step,
            last_log_step=self.last_log_step,
            log_frequency=self.log_frequency,
            last_model_update_step=self.last_model_update_step,
            check_model_update=check_model_update,
        )

    def model_updated(self, step: LogStepType = None) -> None:
        """
        Sets the last model update to the given step

        :param step: The step to set the last model update to
        :post-cond: The last model update step is set to the given step
        """
        self._validate_log_step(log_step=step)
        self.last_model_update_step = step

    def log_written(self, step: LogStepType = None) -> None:
        """
        Sets the last log step to the given step

        :param step: The step to set the last log step to
        :post-cond: The last log step is set to the given step
        """
        self._validate_log_step(log_step=step)
        self.last_log_step = step

    @property
    def log_frequency(self) -> LogStepType:
        """
        :return: The log frequency
        """
        return self._log_frequency

    @log_frequency.setter
    def log_frequency(self, log_frequency: LogStepType) -> None:
        """
        Sets the log frequency to the given value

        :param log_frequency: The log frequency to set
        :post-cond: The log frequency is set to the given value
        """
        self._validate_log_frequency(log_frequency=log_frequency)
        self._log_frequency = log_frequency

    @property
    def is_optim_frequency_manager(self) -> bool:
        """
        :return: True if the frequency manager is tracking optimizer steps,
            False otherwise
        """
        return self.frequency_type == "step"

    @property
    def is_epoch_frequency_manager(self) -> bool:
        """
        :return: True if the frequency manager is tracking epochs,
            False otherwise
        """
        return self.frequency_type == "epoch"

    def _validate_log_frequency(self, log_frequency):
        # checks that log frequency is a positive number or None
        # raise TypeError if not a number or None
        # raises ValueError if not a positive number

        try:
            self._validate_log_step(log_step=log_frequency)
            if log_frequency == 0:
                raise ValueError()
            # except clauses update the error message
        except TypeError:
            raise TypeError(
                f"log frequency must be a number or None, given {type(log_frequency)}"
            )
        except ValueError:
            raise ValueError(
                f"log frequency must be greater than 0, given {log_frequency}"
            )

    def _validate_log_step(self, log_step):
        # checks that log step is a non negative number or None
        # raise TypeError if not a number or None
        # raises ValueError if negative number

        if not isinstance(log_step, self._valid_python_types) or isinstance(
            log_step, bool
        ):
            raise TypeError(
                f"log step must be a number or None, given {type(log_step)}"
            )

        if log_step is not None and log_step < 0:
            raise ValueError(
                f"log step must be greater than or equal to 0, given {log_step}"
            )

    def _set_logging_mode(self, mode: LoggingModeType) -> LoggingModeType:
        """
        Set the logging mode for the frequency manager.
        The logging mode determines how the frequency manager determines
        if it is ready to log

        :param mode: The logging mode to set
        :post-cond: The self._logging_mode is set to the given mode
        :post-cond: The self._check_model_update is set to True if the mode is
            "on_change"
        :raises ValueError: If the given mode is not one of "on_change" or "exact"
        :return: The logging mode that was set
        """
        mode = _basic_normalization(mode)
        if mode == "on_change":
            self._check_model_update = True
            self._logging_mode = "on_change"
        elif mode == "exact":
            self._check_model_update = False
            self._logging_mode = "exact"
        else:
            raise ValueError(
                f"Invalid logging mode {mode}, must be one of 'on_change', 'exact'"
            )
        return self._logging_mode

    def _set_frequency_type(self, frequency_type: FrequencyType) -> FrequencyType:
        """
        Set the frequency type for the frequency manager.
        The frequency type determines what the frequency manager is tracking.
        For example, if the frequency type is "epoch", then the frequency manager
        will track the number of epochs that have passed since the last log.

        :param frequency_type: The frequency type to set
        :post-cond: The self._frequency_type is set to the given frequency type
        :post-cond: The self._valid_python_types is set to the valid python types
            for the given frequency type, e.g. (int, float, type(None)) for "epoch"
            and (int, type(None)) for "step" or "batch"
        :raises ValueError: If the given frequency type is not one of "epoch",
            "step"
        :raises NotImplementedError: If the given frequency type is "batch"
        :return: The frequency type that was set
        """
        frequency_type = _basic_normalization(frequency_type)
        if frequency_type == "epoch":
            self.frequency_type = "epoch"
            self._valid_python_types = (int, float, type(None))
        elif frequency_type == "step":
            self.frequency_type = "step"
            self._valid_python_types = (int, type(None))
        elif frequency_type == "batch":
            raise NotImplementedError
        else:
            raise ValueError(
                f"Invalid frequency type {frequency_type}, must be one of "
                "'epoch', 'step'"
            )
        return self.frequency_type

is_epoch_frequency_manager property

Returns:

Type Description
bool

True if the frequency manager is tracking epochs, False otherwise

is_optim_frequency_manager property

Returns:

Type Description
bool

True if the frequency manager is tracking optimizer steps, False otherwise

log_frequency property writable

Returns:

Type Description
LogStepType

The log frequency

log_ready(current_log_step, check_model_update=False)

Check if the frequency manager is ready to log Conditions for readiness: - log frequency is not None - current log step is None - current log step greater than or equal to the last log step plus the log frequency - if check_model_update is True, or self._check_model_update is True, then the last model update step must be greater than or equal to the last log step, and the current log step must be greater than or equal to the last model update step plus the log frequency

Parameters:

Name Type Description Default
current_log_step LogStepType

The current log step

required
check_model_update bool

If True, will check if the model has been updated since the last log step and if _log_frequency steps have passed since the last model update; Defaults to False.

False

Returns:

Type Description

True if the frequency manager is ready to log, False otherwise

Source code in src/llmcompressor/metrics/utils/frequency_manager.py
def log_ready(
    self,
    current_log_step: LogStepType,
    check_model_update: bool = False,
):
    """
    Check if the frequency manager is ready to log
    Conditions for readiness:
        - log frequency is not None
        - current log step is None
        - current log step greater than or equal to the last log step
            plus the log frequency
        - if check_model_update is True, or self._check_model_update is True,
            then the last model update step must be greater than or equal
            to the last log step, and the current log step must be greater
            than or equal to the last model update step plus the log frequency

    :param current_log_step: The current log step
    :param check_model_update: If True, will check if the model has been updated
        since the last log step and if _log_frequency steps have passed since the
        last model update; Defaults to False.
    :return: True if the frequency manager is ready to log,
        False otherwise
    """
    # check_model_update is used to override self._check_model_update
    # e.g. if check_model_update is True, then the model update check
    # will be performed even if self._check_model_update is False

    check_model_update = check_model_update or self._check_model_update

    return log_ready(
        current_log_step=current_log_step,
        last_log_step=self.last_log_step,
        log_frequency=self.log_frequency,
        last_model_update_step=self.last_model_update_step,
        check_model_update=check_model_update,
    )

log_written(step=None)

Sets the last log step to the given step

:post-cond: The last log step is set to the given step

Parameters:

Name Type Description Default
step LogStepType

The step to set the last log step to

None
Source code in src/llmcompressor/metrics/utils/frequency_manager.py
def log_written(self, step: LogStepType = None) -> None:
    """
    Sets the last log step to the given step

    :param step: The step to set the last log step to
    :post-cond: The last log step is set to the given step
    """
    self._validate_log_step(log_step=step)
    self.last_log_step = step

model_updated(step=None)

Sets the last model update to the given step

:post-cond: The last model update step is set to the given step

Parameters:

Name Type Description Default
step LogStepType

The step to set the last model update to

None
Source code in src/llmcompressor/metrics/utils/frequency_manager.py
def model_updated(self, step: LogStepType = None) -> None:
    """
    Sets the last model update to the given step

    :param step: The step to set the last model update to
    :post-cond: The last model update step is set to the given step
    """
    self._validate_log_step(log_step=step)
    self.last_model_update_step = step

log_ready(current_log_step, last_log_step, log_frequency, last_model_update_step=None, check_model_update=False)

Check if we are ready to log again based on the given parameters (Stateless version of FrequencyManager().log_ready)

Conditions for readiness: - log frequency is not None - current log step is None - current log step greater than or equal to the last log step plus the log frequency - if check_model_update is True, then the last model update step must be greater than or equal to the last log step, and the current log step must be greater than or equal to the last model update step plus the log frequency

Parameters:

Name Type Description Default
current_log_step Optional[LogStepType]

The current log step

required
last_log_step Optional[LogStepType]

The last step at which logging occurred

required
log_frequency Optional[LogStepType]

The frequency to log at

required
last_model_update_step Optional[LogStepType]

The last step at which the model was updated

None
check_model_update bool

If True, will check if the model has been updated since the last log step and if log_frequency steps have passed since the last model update; Defaults to False.

False

Returns:

Type Description

True if logging cadence has been reached again False otherwise

Source code in src/llmcompressor/metrics/utils/frequency_manager.py
def log_ready(
    current_log_step: Optional[LogStepType],
    last_log_step: Optional[LogStepType],
    log_frequency: Optional[LogStepType],
    last_model_update_step: Optional[LogStepType] = None,
    check_model_update: bool = False,
):
    """
    Check if we are ready to log again based on the given parameters
    (Stateless version of FrequencyManager().log_ready)

    Conditions for readiness:
        - log frequency is not None
        - current log step is None
        - current log step greater than or equal to the last log step
            plus the log frequency
        - if check_model_update is True, then the last model update step
            must be greater than or equal to the last log step, and the
            current log step must be greater than or equal to the
            last model update step plus the log frequency

    :param current_log_step: The current log step
    :param last_log_step: The last step at which logging occurred
    :param log_frequency: The frequency to log at
    :param last_model_update_step: The last step at which the model was updated
    :param check_model_update: If True, will check if the model has been updated
        since the last log step and if log_frequency steps have passed since the
        last model update; Defaults to False.
    :return: True if logging cadence has been reached again False otherwise
    """
    # format is used to avoid floating point errors
    # e.g. 0.1 + 0.2 != 0.3
    # format(0.1 + 0.2, ".4f") == format(0.3, ".4f")

    cadence_reached: bool = log_frequency is not None and (
        current_log_step is None
        or last_log_step is None
        or current_log_step >= float(format(last_log_step + log_frequency, ".4f"))
    )

    if not cadence_reached or not check_model_update:
        # early return if cadence not reached or,
        # model update check not requested
        return cadence_reached

    model_updated_since_last_log: bool = (
        last_model_update_step is None
        or last_log_step is None
        or current_log_step is None
        or (
            last_model_update_step >= last_log_step
            and current_log_step
            >= float(format(log_frequency + last_model_update_step, ".4f"))
        )
    )

    return cadence_reached and model_updated_since_last_log