llmcompressor.observers.base
Observer
Bases: Module
, RegistryMixin
Base Observer class to be subclassed for specific implementation. Subclasses should override calculate_qparams
to return a scale, zero_point pair
Source code in src/llmcompressor/observers/base.py
18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 |
|
calculate_qparams(observed, reduce_dims=None)
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observed | Tensor | observed tensor to calculate quantization parameters for | required |
reduce_dims | Optional[Tuple[int]] | optional tuple of dimensions to reduce along, returned scale and zero point will be shaped (1,) along the reduced dimensions | None |
Returns:
Type | Description |
---|---|
Tuple[FloatTensor, IntTensor] | tuple of scale and zero point derived from the observed tensor |
Source code in src/llmcompressor/observers/base.py
forward(observed, g_idx=None)
maps directly to get_qparams
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observed | Tensor | optional observed tensor from which to calculate quantization parameters | required |
g_idx | Optional[Tensor] | optional mapping from column index to group index | None |
Returns:
Type | Description |
---|---|
Tuple[FloatTensor, IntTensor] | tuple of scale and zero point based on last observed value |
Source code in src/llmcompressor/observers/base.py
get_qparams(observed=None, g_idx=None)
Convenience function to wrap overwritten calculate_qparams adds support to make observed tensor optional and support for tracking latest calculated scale and zero point
Parameters:
Name | Type | Description | Default |
---|---|---|---|
observed | Optional[Tensor] | optional observed tensor to calculate quantization parameters from | None |
g_idx | Optional[Tensor] | optional mapping from column index to group index | None |
Returns:
Type | Description |
---|---|
Tuple[FloatTensor, IntTensor] | tuple of scale and zero point based on last observed value |
Source code in src/llmcompressor/observers/base.py
post_calculate_qparams()
record_observed_tokens(batch_tensor)
Counts the number of tokens observed during the forward passes. The count is aggregated in the _num_observed_tokens attribute of the class.
Note: The batch_tensor is expected to have two dimensions (batch_size * sequence_length, num_features). This is the general shape expected by the forward pass of the expert layers in a MOE model. If the input tensor does not have two dimensions, the _num_observed_tokens attribute will be set to None.