llmcompressor.transformers
Tools for integrating LLM Compressor with transformers training flows
SessionManagerMixIn
Mix-In class to extend the Hugging Face Trainer class to support LLM Compressor recipes for one-shot and finetuning flows.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
recipe | str | path to recipe file to apply during training | required |
recipe_args | Optional[Union[Dict[str, Any], str]] | additional kwargs to use for evaluating recipe | None |
dataset_args | Optional[DatasetArguments] | kwargs for configuring dataset loading | None |
teacher | Optional[Union[Module, str]] | optional teacher model to use for distillation | None |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 |
|
compute_loss(model, inputs, return_outputs=False, num_items_in_batch=None)
Override for the compute_loss to factor trigger callbacks and filter columns
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | Module | the model to compute the loss for | required |
inputs | Dict[str, Any] | the inputs to pass through the model for calculating the loss | required |
return_outputs | bool | True to return the outputs with the loss, False otherwise | False |
Returns:
Type | Description |
---|---|
Union[Tensor, Tuple[Tensor, Any]] | the resulting loss if not return_outputs, otherwise a tuple containing the loss and the model's outputs |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
create_optimizer()
Override the optimizer to apply and update the recipe while training. create_optimizer must exist in the parent class and should set self.optimizer to the optimizer state and optionally set self.scaler if using amp.
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
create_scheduler(num_training_steps, optimizer=None)
Create an LR scheduler to work with the applied recipes. This is a placeholder that just calls the super method, but would be expanded upon if we ever implement a LearningRateModifier.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
num_training_steps | int | the total number of training steps | required |
optimizer | Optimizer | pre-initialized optimizer | None |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
finalize_session()
Wrap up training by finalizing all modifiers initialized in the current session
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
initialize_session(epoch, checkpoint=None, stage=None)
Initialize the CompressionSession from the specified epoch, evaluates the recipe and initialized the modifiers for the training session
Parameters:
Name | Type | Description | Default |
---|---|---|---|
epoch | float | Epoch to initialize session from, usually 0 unless loading from a checkpoint | required |
checkpoint | Optional[str] | Optional checkpoint to initialize from to continue training | None |
stage | Optional[str] | Optional stage of recipe to run, or None to run all stages | None |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
log_model_sparsification()
Log the current model sparsification info including pruned and quantized states
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
maybe_log_model_sparsification()
Log info on model sparsity and quantization if possible. Only print logs on the main process, and avoid logging for quantized FSDP models
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
save_model(output_dir, _internal_call=False, skip_sparsity_compression_stats=False)
Override of the save_model function and expects it to exist in the parent. Calls into super() to save the model and additionally saves any recipes that were used with the model within the model folder.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
output_dir | str | the path to save the recipes into | required |
_internal_call | bool | True if this is an internal call from the trainer in super(). Called from self.save_model(output_dir, _internal_call=True) in transformers/trainer/Trainer::_save_checkpoint | False |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
train(*args, stage=None, **kwargs)
Run a sparsification training cycle. Runs initialization for the sparse session before calling super().train() and finalization of the session after.
Logs sparsification details for the trained model.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
args | positional args to pass to super().train() | () | |
stage | Optional[str] | Optional stage of recipe to run, or None to run all stages | None |
kwargs | keyword args to pass to super().train() | {} |
Returns:
Type | Description |
---|---|
the output from super.train() |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
training_step(model, inputs, num_items_in_batch=None)
Overrides the Trainer's training step to trigger the batch_start callback to the modifiers, then calls the parent function.
Parameters:
Name | Type | Description | Default |
---|---|---|---|
model | Module | the model to compute the loss for | required |
inputs | Dict[str, Union[Tensor, Any]] | the inputs to pass through the model for calculating the loss | required |
Returns:
Type | Description |
---|---|
Tensor | output of the model |
Source code in src/llmcompressor/transformers/finetune/session_mixin.py
TextGenerationDataset
Bases: RegistryMixin
Base class for text datasets. Applies the following transformations to a dataset in order to prepare the dataset to be loaded by a dataloader
- Load dataset from huggingface or local cache
- Preprocess dataset according to preprocess function or chat/dataset template
- Tokenize dataset using model tokenizer/processor
- Apply post processing such as grouping text and/or adding labels for finetuning
Parameters:
Name | Type | Description | Default |
---|---|---|---|
dataset_args | DatasetArguments | configuration settings for dataset loading | required |
split | str | split from dataset to load, for instance | required |
processor | Processor | processor or tokenizer to use on dataset | required |
Source code in src/llmcompressor/transformers/finetune/data/base.py
24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 |
|
preprocess
cached
property
The function must return keys which correspond to processor/tokenizer kwargs, optionally including PROMPT_KEY
load_dataset()
Load the raw dataset from Hugging Face, using cached copy if available
Parameters:
Name | Type | Description | Default |
---|---|---|---|
cache_dir | disk location to search for cached dataset | required |
Returns:
Type | Description |
---|---|
the requested dataset |
Source code in src/llmcompressor/transformers/finetune/data/base.py
map(dataset, function, **kwargs)
Wrapper function around Dataset.map and IterableDataset.map.
If the dataset is streaming (in the case of IterableDataset), non-applicable arguments are ignored and the dataset features are resolved
Source code in src/llmcompressor/transformers/finetune/data/base.py
is_model_ct_quantized_from_path(path)
Determine if model from path is quantized based on the config
Parameters:
Name | Type | Description | Default |
---|---|---|---|
path | str | path to the model or HF stub | required |
Returns:
Type | Description |
---|---|
bool | True if config contains quantization_config from the given path |